Total Synthesis of Pacidamycin D by
Cu(l)-Catalyzed Oxy Enamide Formation
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ABSTRACT

The first total synthesis of pacidamycin D, which is expected to be a good candidate as an antibacterial agent against P. aeruginosa, is described.
The key elements of our approach feature an efficient and stereocontrolled construction of the Z-oxyvinyl iodide and copper-catalyzed cross-

coupling with the tetrapeptide carboxamide.

Uridylpeptide antibiotics are nucleoside natural pro-
ducts sharing a common structural feature, namely, a
3’-deoxyuridine with an enamide linkage at the 5'-position
that is attached to a tetrapeptide moiety via a central o.f3-
diaminobutyric acid that connects the N-terminal amino
acid, the ureadipeptide, and the 3'-deoxyuridine moieties
(Figure 1)."> Among the class of uridylpeptide antibiotics,
the pacidamycins (1),® isolated from the fermentation

broth of the Streptomyces coeruleorubiduns strain, showed
potent and selective antibacterial activity against strains
of Pseudomonas (MIC 1.5—12.5 ug/mL). The biological
target of the pacidamycins is believed to be phospho-
MurNAc-pentapeptide transferase (MraY),*> which is
responsible for the formation of lipid I in the peptidoglycan
biosynthesis pathway.®"® Since MraY is an essential en-
zyme in bacteria,'? it is a potential target for the
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development of general antibacterial agents. Conse-
quently, uridylpeptide antibiotics which have a novel
mode of action are expected to be good candidates as
antibacterial agents effective against P. aeruginosa.
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Figure 1. Structure of uridylpeptide natural products.

Despite extensive efforts to prepare analogues of the
uridylpeptide antibiotics, including 1,'°~'® no total synth-
esis has yet been accomplished. The difficulty in the
chemical synthesis 1 involves the Z-oxyenamide moiety,
which is chemically labile and therefore a challenging
chemical structure to construct. Moreover, analogues
having the enamide functionality have been prepared
only by semisynthesis from natural sources'’ and by
biosynthesis.'® Herein we describe the first total synthesis
of pacidamycin D (1). Scheme 1 highlights the key elements
of our retrosynthetic approach to the synthesis of 1, which
features an efficient and stereocontrolled construction of
the Z-oxyvinyl iodide 4 and a copper-catalyzed cross-
coupling'® of the iodide 4 with the highly functionalized
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Scheme 1. Retrosynthetic Analysis of Pacidamycin D
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tetrapeptide carboxamide 3. The tetrapeptide carboxa-
mide 3 contains a number of potentially reactive functional
groups that render selective synthetic modification diffi-
cult. We first planned to remove the allylic 3’-hydroxyl
group at the uridine moiety by Barton deoxygenation after
the cross-coupling.

Preparation of the tetrapeptide is described in Scheme 2.
The carboxylic acid 5°° and the pentafluorophenyl (Pfp)
ester of the unsymmetrical urea 7' were prepared as
previously described. Deprotection of the Boc group of 5
and the subsequent condensation of the liberated amine 6
with 7 gave the tripeptide 8. N—O Bond breakage was
achieved by catalytic hydrogenation, and the resulting
secondary amine 9 (quant. over three steps from 5) was
further reacted with the Pfp ester of N-Boc-L-Ala 10 to
afford the tetrapeptide carboxylic acid 11 in 69% yield.
Finally, the carboxyl group of 11 was converted to the
carboxamide (HATU, NH4Cl, NMM, DMF) to give 3 in
82% yield.

The Z-oxyvinyl ioide 4 was prepared as shown in
Scheme 3. After protecting group manipulation of the
uridine derivative 12*2 (BOMCI, DBU, DMF, 99%,
TFA—-THF—-H,0, 0 °C, 83%), the primary alcohol of
14 was converted to the iodide (I, PPhs, pyridine, dioxane,
99%). Elimination of HI from 15 was promoted by DBU
to afford the exo-olefin 16> in 93% yield. Previously, vinyl
halide derivatives of nucleoside were generally prepared
from an exo-olefin derivative by a rather lengthy conver-
sion, where the terminal hydrogen atom was substituted
sequentially with a phenylthio, a tributylstannyl, and an
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Scheme 2. Preparation of the Tetrapeptide Carboxamide 3
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iodo group.>* Extensive efforts to obtain 4 directly from 16
revealed that the use of the iodonium dicollidinium
triflate’*® (IDCT) was indeed effective. The desired
Z-vinyl iodide 4 was obtained in 79% yield as the sole
product when 16 was treated with 1.0 equiv of IDCT in
CH,Cl, at room temperature. The geometry of the olefin
was confirmed by a 500 MHz NOE experiment in CDCls,
where the correlation to H-3' was observed upon irradia-
tion at H-5' (7.2%).

Then, the key coupling of 4 with the tetrapeptide
carboxamide 3 was investigated. First, the iodide 4 was
reacted with 3 under the following conditions: 0.2 equiv of
Cul, 0.4 equiv of MeNHCH,CH,NHMe (A), Cs,COs,
THF, 70 °C.>"® However, a large amount of the iodide
remained unreacted, and only a trace amount of the
desired 17 was obtained. On the other hand, the tetrapep-
tide 3 was consumed, and cyclic products such as 18 were
obtained from the reaction mixture indicated by MS
analysis although not fully confirmed. In general, the
copper-mediated C—N cross-coupling reaction proceeds
through initial formation of the nitrogen—copper complex
followed by an oxidative insertion into the halide and then
reductive elimination.?® It is presumed that if the oxida-
tive insertion is slow, the nitrogen atom, activated by
formation of the carboxamide—copper(I) complex, reacts
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Scheme 3. Initial Attempt to Synthesize 1
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with the rert-Bu ester at the C-terminus to form the cyclic
product 18. In order to suppress the approach of the
nitrogen atom to the zert-Bu ester, we increased the size
of the ligand coordinating to the copper atom using ligands
such as B. As expected, the use of the ligand resulted in an
increased yield (32%). The yield of 17 was improved up
to 86% by increasing the catalyst loading (0.8 equiv). Of
note is the highly selective reaction at the N-unsubstituted
carboxamide moiety in spite of the presence of a number
of potential reactive sites, including the primary amide, the
carbamate, and the urea groups.

Next, a selective deoxygenation of the allylic 3’-hydroxyl
group on the model cyclic thiocarbonate 20°° was then
investigated (Scheme 4). Thus, TBS groups of 19 were
removed (TBAF, THF, 99%), and the resulting diol was
reacted with phenyl chlorothionocarbonate to afford the
cyclic thiocarbonate 20 in 75% yield. However, exposure
of 20 to either Bu3SnH and AIBN in toluene at reflux or
Bu;SnH and V-70*! in CH,Cl, at room temperature led to
a complex mixture of products, and the desired deoxyge-
nated compound 21 was not isolated.

Since the model study in Scheme 4 suggested that the
late stage deoxygenation of the 3'-hydroxyl group may be
difficult, the total synthesis of 1 was pursued with the
3’-deoxyvinyliodide 27 (Scheme 5). Asin the synthesis of 4,
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Scheme 4. Attempt of Deoxygenation with Model Com-
pound 20
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the exo-olefin 26, which was obtained from 22,> was
treated with IDTC in CH,Cl,. However a significant
amount of FE-exo-olefin (10% yield) and endo-olefin
(39%) were also produced in addition to the desired
Z-exo-olefin 27 (28%). The observed decrease in selectivity
could be attributed to the absence of the substituted
hydroxyl group at the 3'-position. The yield of 27 was
improved up to 53% by conducting the reaction in MeCN
at —20 °C although the effect of solvent on the selectivity
remains unclear. The iodide 27 and the tetrapeptide 3 were
coupled using the optimized conditions (0.8 equiv of Cul,
1.6 equiv of ligand B, Cs,CO3, THF, 70 °C) to afford the
fully protected pacidamycin D 28 in 82% yield. Finally,
deprotection of the BOM, Cbz, and tert-Bu groups (BCl;,
CH,Cl,, —78 °C) and the TBS group (SHF-NEt;, 30%
over two steps) successfully afforded pacidamycin D (1).
Analytical data for the synthetic compound were in good
agreement with those reported for the natural material.*®
Preliminary biological evaluation indicated that 1 showed
potent inhibitory activity (ICsy 22 nM) against isolated
MraY from S. aureus and antibacterial activity selectively
against a range of P. aeruginosa strains (MIC 16 ug/mL for
P. aeruginosa ATCC 25619 and P. aeruginosa SR 27156
and 64 ug/mL for P. aeruginosa PAO1, respectively).

In conclusion, the first total synthesis of pacidamycin D
(1) has been accomplished. By virtue of the assemblage, via
cross-coupling, of the Z-oxyvinylhalide 27 and the tetra-
peptide 3 at a late stage in the synthesis, and despite the
challenges this imposes because of the inherent lability with
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Scheme 5. Total Synthesis of 1
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potential epimerization, this approach provided ready
access to a range of uridylpeptide antibiotics and their
analogs simply by altering the tetrapeptide moiety. Results
of further studies will be forthcoming.
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